drf-tester Documentation
Release latest

Nov 05, 2021

CONTENTS

Requirements 3
Installation 5
Table of Contents 7
3.1 BaseDrfTest o e e e e e e 7
3.2 Viewset TEStS v v o e e e e e e e 8
33 Example . .. oL e e e e e e e e e e e 9

dri-tester Documentation, Release latest

drf-tester is a Python module that aims to help developers with testing DjangoRestFramework API endpoints.
* Minimize the time (and lines of code) required
* Mantain consistent testing coverage
¢ Increase productivity!
The philosophy behind the design of this module, is that a developer should only need to:
1. Prepare the setUp method of a Test class
2. Choose the correct classes to inheritb for each type of access
3. Smile!!

This saves us developers lots of time writing repetitive, boiler-plate code, while reassuring that our tests are, at the very
least, consistent.

CONTENTS 1

drf-tester Documentation, Release latest

2 CONTENTS

CHAPTER
ONE

REQUIREMENTS

The module has been tested to work with the following software versions.
e Python 3.7
* Django 2.2
* DjagnoRESTFramework 3.12.2
e factory-boy 3.1.0

Compatibility likely greater than indicated here (let me know if something else works for you)

drf-tester Documentation, Release latest

4 Chapter 1. Requirements

CHAPTER
TWO

INSTALLATION

To install drf-tester in your systems, use pip:

pip install drf-tester

drf-tester Documentation, Release latest

6 Chapter 2. Installation

CHAPTER
THREE

TABLE OF CONTENTS

3.1 BaseDrfTest

Located in drf_tester.utils this class is the glue that makes it all work.
It contains the setUp method to be run before every test, as well as some helper functions and Object variables.

Check out the code for more details.

3.1.1 Built-in Functions

Some generic methods are created for DRYer single-action test classes.
e get_admin_user(self, data: dict) -> User
e get_active_user(self, data: dict) -> User
e get_active_staff(self, data: dict) -> User

¢ get_model_instances(self) -> list

3.1.2 Object Variables

Some Object-level variables are declared outside of setUp for convenience.

* EXACT_AMOUNT: if is set to an integer value, get_model_instances will return a list of instances of exactly
that size.

e MIN and MAX: used as limits when using random.randint to create a list of instances of random size. Default:
5 and 10.

3.1.3 setUp()

The variables required for correct operation:

self.endpoint = None # string with the url of the endpoint

self.factory = None # factory-boy class to create model instances

self.model = None # the model accessed through the endpoint

self.instance_data = {} # dict of valid SERIALIZED data for instance creation
self.view = viewsets.YourViewSet.as_view({"get": "list", "post": "create", "put": "update
<", "delete": "destroy"})

self.user_data = {} # Required for authenticated user testing

(continues on next page)

drf-tester Documentation, Release latest

(continued from previous page)

self.admin_data = {} # Required for super user testing
self.staff_data = {} # Required for staff user testing
self.USER_FIELD_NAME = 'creator’ # Required for testing user object access

3.1.4 Access Level

Once you know what level of access each kind of user should have, just add those classes to your tests, after
APITestCase.

Example:

from drf_tester.viewsets import anon, admin, auth

class YourViewSetTest(APITestCase, anon.AnonNoAccess, auth.AuthFullAccess, admin.
—>AdminFullAccess):
"""To test a ModelViewSet with IsAuthenticated as the only Permission

e

def setUp(self):

3.2 Viewset Tests

All the classes to assist with the development of tests for ViewSets are located under drf_tester.viewsets, and
separated by user type:

* anon.py: Anonymous users

e auth.py: Authenticated users

* admin.py: Admin user (superusers)
e staff.py: Staff users

Within each file, there are classes that test the effects of different actions on the endpoint. For example:

drf_tester/viewsets/anon.py

class NoCreate(BaseDrfTest):
def test_anon_user_cannot_create_instance(self):
"""Anonymous user cannot create new instance

o

These single-action classes are grouped in bigger classes meant to be inherited by the final test cases. For example:

class AnonReadOnly(CanList, CanRetrieve, NoCreate, NoUpdate, NoDestroy):

e

Anonymous user has only read access to endopint

o

pass

A few different combinations are provided for your convenience:

8 Chapter 3. Table of Contents

dri-tester Documentation, Release latest

* For anonymous users:

— AnonNoAccess

— AnonReadOnly

— AnonFullAccess
* For authenticated users:

AuthFullAccess

AuthNoAccess

AuthReadOnly

AuthOwner: only controls instances linked to user

* For admin users:
— AdminNoAccess
— AdminReadOnly
— AdminFullAccess
¢ For staff users:
— StaffNoAccess
— StaffReadOnly
— StaffFullAccess

Custom groups can be made mixing and matching classes according with the level of access expected by each user-type
from each endpoint.

3.3 Example

Included in the repository, there’s an example illustrating how to implement in your project.

From example_one:

class ThingViewSetTest(APITestCase, AnonNoAccess, AuthFullAccess, AdminFullAccess):
Thing viewset tests
Permission level: IsAuthenticated

o

def setUp(self):
"""Tests setup
self.endpoint = "/api/v1/things/"
self.factory = factories.ThingFactory
self.model = models.Thing
self.view = views.ThingViewSet.as_view({"get": "list", "post": "create", "put":
~"update", "delete": "destroy"})
self.instance_data = {...}
self.user_data = {...}
self.admin_data = {...}

i

For more details, checkout the project under example/example_one/

3.3. Example 9

	Requirements
	Installation
	Table of Contents
	BaseDrfTest
	Built-in Functions
	Object Variables
	setUp()
	Access Level

	Viewset Tests
	Example

